Investigations of the (p, ρ, T) Properties and Apparent Molar Volumes V_{ϕ} of the $\mathrm{LiCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathbf{O H}$ Solutions

Department: "Heat and Refrigeration Techniques", Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku, Azerbaijan, and Lehrstuhl für Technische Thermodynamik, Universität Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany

Abstract

The (p, ρ, T) properties and apparent molar volumes V_{ϕ} of LiCl in ethanol at $T=(298.15$ to 398.15$) \mathrm{K}$ and pressures up to $p=40 \mathrm{MPa}$ are reported. An empirical correlation for the density of $\left(\mathrm{LiCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ with pressure, temperature, and molality has been derived. The experiments were carried out at molalities of $m=(0.10487,0.30229,0.58732,1.22211,2.02242$, and 2.87989$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$ using lithium chloride.

Introduction

An absorption heat transfer performs cooling and/or heating by using outside air as a radiation source and an absorption source. It is similar to a vapor-compression device except that compression is accomplished in the absorption heat pump through the use of a thermochemical compressor. The simple thermochemical compressor consists of an absorber, a solution pump, a heat exchanger, and a desorber.
The efficiency of an absorption heat transfer cycle is largely dependent on the physical and chemical properties of the heat transfer fluids. The most serious problems by using the conventional aqueous solutions of electrolytes were discussed in our previous publications on the investigation of methanol solutions of electrolytes. ${ }^{1,2}$ In the present work, we begin to analyze the thermal properties of ethanol solutions of electrolytes for their future application as heat transfer fluids in absorption heat transfer systems, where they can replace aqueous solutions at temperatures below the freezing point of water. Ethanol has a lower freezing point than methanol, and this effect can help the optimal circulation of the heat transfer agent in the closed system.

In the present work, the (p, ρ, T) properties and apparent molar volumes V_{ϕ} of LiCl in ethanol at $T=(298.15$ to 398.15) K and pressures up to $p=40 \mathrm{MPa}$ are reported. An empirical correlation for the density of $\left(\mathrm{LiCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ with pressure, temperature, and molality has been derived.

Few works ${ }^{3-8}$ with density measurements and apparent molar volumes of LiCl in ethanol solutions are available in the literature. (p, ρ, T) properties of these solutions were not available in the literature. Butler and Less ${ }^{3}$ studied the refractive index, density, and partial molar volume of these solutions at T $=291.15 \mathrm{~K}, m=(0$ to 1.2339$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$, and $p=0.1 \mathrm{MPa}$. Density results were measured by a silika pycnometer with 15 c.c. capacity. Vosburgh et al. ${ }^{4}$ investigated the density and apparent molar volume of LiCl in ethanol at $T=298.05 \mathrm{~K}, m$ $=(0.276$ to 0.87708$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$, and $p=0.1 \mathrm{MPa}$. Temperature was measured with a thermometer calibrated by the N.P.L. with $\pm 0.01^{\circ} \mathrm{C}$. Density was measured by a pycnometer with 33 c.c. capacity. Millero ${ }^{5}$ in 1971 fully analyzed the apparent molar

[^0]

Figure 1. Plot of experimental density ρ of ethanol solutions of LiCl versus pressure p at $m=0.58732 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$: $\uparrow, 298.15 \mathrm{~K} ; \boldsymbol{\square}, 323.15 \mathrm{~K} ; \mathbf{\Delta}, 348.15$ $\mathrm{K} ; \bullet 373.15 \mathrm{~K} ; \square, 398.15 \mathrm{~K} ; \ldots$ calculated by eqs 5 to 8 .
volumes of electrolytes in various substances. Using the available previous research works, he found the apparent molar volume of LiCl in ethanol at infinite dilution. Kawaizumi and Zana ${ }^{6}$ studied the partial molal volumes of ions in organic solvents from ultrasonic vibration potentials and density measurements. The apparent molar volume of LiCl in ethanol at infinite dilution was determined and compared with the results from ref 3. Glugla et al. ${ }^{7}$ investigated the partial molar volume of monovalent salts and polar molecules in organic solvents. High-volume injection and flow dilatometers were used during the experiments. The apparent molar volumes of LiCl in ethanol were measured at $T=298.15 \mathrm{~K}, m=(0.00196$ to 2.2998$)$ $\mathrm{mol} \cdot \mathrm{kg}^{-1}$, and $p=0.1 \mathrm{MPa}$. The temperature bath used with this apparatus controlled temperature fluctuation to within 0.001 ${ }^{\circ} \mathrm{C}$. The volume change was always less than 0.0001 mL and frequently less than 0.00005 mL . The partial molar volumes measured in aprotic solvents with this apparatus were precise to better than $\pm 2 \%$. In 2004, Marcus and Hefter ${ }^{8}$ carried out a full literature analysis of investigations of thermodynamic

Figure 2. Plot of experimental density ρ of ethanol solutions of LiCl versus pressure p at $T=298.15 \mathrm{~K}: \square, m=0$ (from refs 14 to 16); $\downarrow m=0.10487$ $\mathrm{mol} \cdot \mathrm{kg}^{-1} ; \boldsymbol{\square}, m=0.30229 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \mathbf{\Delta}, m=0.58732 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \bullet, m$ $=1.22211 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \diamond, m=2.02242 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \Delta, m=2.87989$ $\mathrm{mol} \cdot \mathrm{kg}^{-1}$; _ calculated by eqs 5 to 8 .

Figure 3. Plot of deviations of experimental density $\rho_{\text {exp }}$ from density calculated $\rho_{\text {cal }}$ by eqs 5 to 8 versus pressure $p: \Delta, m=0.10487 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$; $\square, m=0.30229 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \bullet, m=0.58732 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \mathbf{\Delta}, m=1.22211$ $\mathrm{mol} \cdot \mathrm{kg}^{-1} ; \quad, m=2.02242 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \quad \square, m=2.87989 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$.
properties of $\mathrm{LiCl}+$ ethanol solutions from previous years. The apparent molar volumes at infinite dilution at $T=298.15 \mathrm{~K}$ were analyzed, and $V_{\phi}^{0}=-4.9 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ was selected as the reference value.

Experimental Section

The (p, ρ, T) properties were investigated using a modified high-pressure-high-temperature Anton-Paar vibrating-tube densimeter (model DMA 5000). ${ }^{9}$ This instrument is very suitable

Figure 4. Plot of isothermal compressibility $k \cdot 10^{6} / \mathrm{MPa}^{-1}$ of ethanol solutions of LiCl versus pressure p at $m=0.30229 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$: $\downarrow, 298.15$ $\mathrm{K} ; \square^{\boldsymbol{■}}, 323.15 \mathrm{~K} ; \boldsymbol{\Delta}, 348.15 \mathrm{~K} ; \bullet 373.15 \mathrm{~K} ; \square, 398.15 \mathrm{~K}$.

Figure 5. Plot of thermal expansibilities $\alpha \cdot 10^{6} / \mathrm{K}^{-1}$ of ethanol solutions of LiCl versus pressure p at $m=1.22211 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}: \star, 298.15 \mathrm{~K} ; \square, 323.15$ $\mathrm{K} ; \mathbf{\Delta}, 348.15 \mathrm{~K} ; \bullet, 373.15 \mathrm{~K}$; 口, 398.15 K .
for fast and precise measurements of the density of liquids in wide temperature and pressure ranges. The principle of a vibrating tube densimeter is in the phenomena in which the vibrating period of the unilaterally fixed U-tube changes with the density of the sample fluid. In this method, the vibration period τ of the U-shape tube completely filled with the sample liquid is measured, and then the densities ρ of the sample liquid are computed by applying a principle of a fixed relation between τ and ρ. The liquid sample is a part of the vibrating system affecting directly its mass and thus also its resonant frequency. Due to the complexity of the geometry of the vibrating tube, it requires calibration with a reference fluid of well-known density. This method is suited to precisely measure the difference between the density of the liquid and reference fluid. The precision of the density measurements with the instrument is

Table 1. Experimental (p, ρ, T) Results of $\left(\mathrm{LiCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathbf{O H}\right)$

$m=0.10487 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$					
p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$
$T=298.15 \mathrm{~K}$		$T=348.15 \mathrm{~K}$		$T=398.15 \mathrm{~K}$	
0.21	789.29	0.14	743.86	0.74	688.68
5.12	793.51	5.08	749.63	5.01	695.99
10.03	797.57	10.06	755.18	10.45	704.75
15.24	801.71	15.41	760.81	15.42	712.20
20.06	805.39	20.06	765.44	20.09	718.73
25.41	809.29	25.84	770.86	25.84	726.13
30.06	812.53	30.71	775.12	30.15	731.22
35.71	816.28	35.24	778.84	35.86	737.37
39.98	818.97	39.93	782.45	39.86	741.26
$T=323.15 \mathrm{~K}$		$T=373.15 \mathrm{~K}$			
0.12	767.47	0.29	717.74		
5.14	772.47	5.14	724.52		
10.02	777.11	10.08	731.05		
15.32	781.93	15.42	737.69		
20.04	786.01	20.08	743.13		
25.06	790.15	25.41	748.94		
30.15	794.13	30.26	753.85		
35.61	798.15	35.84	759.05		
39.94	801.15	39.91	762.54		
$m=0.30229 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$					
p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$
$T=298.15 \mathrm{~K}$		$T=348.15 \mathrm{~K}$		$T=398.15 \mathrm{~K}$	
0.18	795.82	0.17	751.06	0.68	696.61
5.04	799.96	5.06	756.68	5.07	704.02
10.24	804.22	10.07	762.15	10.06	711.93
15.62	808.44	15.12	767.36	15.09	719.36
20.05	811.77	20.09	772.20	20.14	726.27
25.84	815.92	25.86	777.45	25.23	732.68
30.56	819.15	30.06	781.03	30.07	738.24
35.84	822.58	35.84	785.62	35.24	743.62
39.91	825.10	39.94	788.64	39.97	748.04
$T=323.15 \mathrm{~K}$		$T=373.15 \mathrm{~K}$			
0.14	774.35	0.31	725.29		
5.21	779.31	5.06	731.82		
10.23	784.00	10.07	738.32		
15.06	788.31	15.02	744.36		
20.45	792.88	20.31	750.38		
25.04	796.57	25.41	755.77		
30.06	800.40	30.06	760.33		
35.02	803.97	35.16	764.94		
39.98	807.32	39.96	768.90		
$m=0.58732 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$					
p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$
$T=298.15 \mathrm{~K}$		$T=348.15 \mathrm{~K}$		$T=398.15 \mathrm{~K}$	
0.25	804.88	0.74	761.48	1.02	708.33
5.52	809.31	5.06	766.32	5.74	716.08
10.44	813.28	10.53	772.13	10.06	722.74
15.17	816.95	15.29	776.89	15.96	731.15
19.25	819.98	20.48	781.78	20.35	736.90
25.64	824.52	25.32	786.04	25.42	742.99
30.11	827.53	30.61	790.37	30.05	748.05
35.56	831.01	35.84	794.33	34.95	752.88
39.82	833.60	39.86	797.14	39.92	757.22
$T=323.15 \mathrm{~K}$		$T=373.15 \mathrm{~K}$			
0.24	783.81	0.96	736.55		
5.03	788.42	5.42	742.51		
10.05	793.02	10.09	748.41		
15.62	797.87	15.85	755.19		
20.47	801.87	20.09	759.84		
25.14	805.52	25.84	765.68		
30.06	809.15	30.15	769.70		
35.22	812.74	35.98	774.65		
39.97	815.82	39.97	777.73		

Table 1. (Continued)

$m=1.22211 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$					
p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	p / MPa	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$
$T=298.15 \mathrm{~K}$		$T=348.15 \mathrm{~K}$		$T=398.15 \mathrm{~K}$	
0.21	823.50	0.42	780.84	0.96	731.58
5.47	827.84	5.06	785.85	4.86	737.73
9.82	831.28	10.21	791.09	9.68	744.82
14.99	835.20	15.28	795.92	15.06	752.07
19.04	838.14	20.14	800.25	20.47	758.65
25.46	842.57	25.07	804.33	25.62	764.26
30.19	845.65	30.41	808.41	30.41	768.90
35.87	849.13	35.42	811.91	35.95	773.57
40.07	851.57	39.97	814.81	39.94	776.48
$T=323.15 \mathrm{~K}$		$T=373.15 \mathrm{~K}$			
0.41	802.86	0.84	757.56		
5.07	807.19	5.06	762.98		
10.20	811.76	10.06	769.02		
15.29	816.02	15.74	775.35		
20.15	819.88	20.34	780.06		
25.06	823.57	25.08	784.55		
30.42	827.32	30.41	789.12		
35.41	830.59	35.84	793.28		
39.96	833.36	39.82	796.01		

$$
m=2.02242 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}
$$

	$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$			$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	ρ / MPa
p / MPa					
	$T=298.15 \mathrm{~K}$				

Table 2. Values of the Coefficients $a_{i j}, b_{i j}$, and $c_{i j}$ in Equations 5 to 8

$a_{i j}$	$b_{i j}$	$c_{i j}$
$a_{10}=-1.360094$	$b_{00}=-1419.63206381$	$c_{00}=1724.38987323$
$a_{11}=-0.0510372$	$b_{01}=587.21071$	$c_{01}=-1357.667957$
$a_{12}=0.15135715$	$b_{02}=275.65116767$	$c_{02}=-532.3577943$
$a_{13}=-0.06578586$	$b_{03}=-271.34232$	$c_{03}=605.31548324$
$a_{14}=0.0118697$	$b_{04}=44.5829$	$c_{04}=-108.611242$
$a_{20}=0.002760349$	$b_{10}=5.730492$	$c_{10}=-2.293768$
$a_{21}=0.16961 \cdot 10^{-5}$	$b_{11}=-2.19719472$	$c_{11}=3.3961916$
$a_{22}=-0.145706 \cdot 10^{-3}$	$b_{12}=-1.428243344$	$c_{12}=2.633988$
$a_{23}=0.250216 \cdot 10^{-4}$	$b_{13}=1.249180504$	$c_{13}=-2.45685$
$a_{24}=-0.614345 \cdot 10^{-5}$	$b_{14}=-0.21176755$	$c_{14}=0.4390121444$

Table 3. Standard, Absolute, and Average Deviations of Equations 5 to 8

molality, $m /\left(\mathrm{mol}^{\cdot} \mathrm{kg}^{-1}\right)$	standard deviation	absolute deviation a	maximum absolute deviation	average percent deviation ${ }^{a}$
0.10487	0.03095	0.14165	0.46	0.01910
0.30229	0.02407	0.12001	0.40	0.01602
0.58732	0.02308	0.12157	0.38	0.01583
1.22211	0.03768	0.18973	0.54	0.02417
2.02242	0.06915	0.34834	0.63	0.04323
2.87989	0.02900	0.16087	0.45	0.01916
The equations of deviations are available in ref 1.				

about $0.01 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, although for glass tubes at low pressures the uncertainty in density measurements is about $0.001 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$. The precision of the method is limited by the calibration procedure.

The behavior of the vibrating tube can be described by the simple mathematical-physical model of the undamped spring-mass system. ${ }^{10}$ The tube is filled with a sample of interest and vibrates perpendicular to its plane in an electromagnetic field. The frequency of the harmonic oscillation of the tube can be directly related to the density of the fluid contained in the tube. The characteristic period of the vibrator, $\tau(\mu \mathrm{s})$, is oscillating at its resonance frequency in the fundamental harmonic mode ${ }^{11}$

$$
\begin{equation*}
\tau=2 \pi\left(\frac{m_{\mathrm{t}}+\rho V_{\mathrm{t}}}{C}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where τ is the period of oscillation of the vibration tube $(\mu \mathrm{s})$; m_{t} is the mass of the empty vibrating tube (kg); V_{t} is the volume of the vibrating tube $\left(\mathrm{m}^{3}\right) ; \rho$ is the sample density $\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$; and C is the spring constant $\left(\mathrm{N} \cdot \mathrm{m}^{-1}\right)$, which depends on the size and shape of the tube and is proportional to Yong's modulus of the tube material.

From written explicitly as eq 1 , the density can be

$$
\begin{equation*}
\rho=A-B \tau^{2} \tag{2}
\end{equation*}
$$

where

$$
B(T, P)=-\frac{C(T, P)}{4 \pi^{2} V_{T}(T, P)}
$$

and

$$
A(T, P)=-\frac{m_{\mathrm{t}}}{V_{T}(T, P)}
$$

The parameters A and B can be determined by substance calibration measuring the period of oscillation of at least two substances of known density (in this work, water and methanol). Unfortunately, the parameters A and B are highly temperature dependent and also pressure dependent. Therefore, the parameters must be determined for each temperature and pressure separately, or like in this work, the classical equation must be

Figure 6. Plot of deviations of extrapolated density $\rho_{\text {ext }}$ of this work from the literature values of ref 4 vs molality m at $T=298.05 \mathrm{~K}$.

Figure 7. Plot of V_{ϕ} of LiCl in ethanol versus m at $T=298.15 \mathrm{~K}: ~ \rightharpoonup, p=$ $0.1 \mathrm{MPa} ; ■, p=5 \mathrm{MPa} ; \boldsymbol{\Delta}, p=10 \mathrm{MPa} ; \boldsymbol{\bullet}, p=15 \mathrm{MPa} ; \diamond, p=20 \mathrm{MPa}$; $\square, p=25 \mathrm{MPa} ; \Delta, p=30 \mathrm{MPa} ; \bigcirc, p=35 \mathrm{MPa} ; *, p=40 \mathrm{MPa} ;+, T$ $=298.05 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}[\operatorname{ref} 3] ; \mathrm{x}, p=0.1 \mathrm{MPa}[\mathrm{ref} 7]$; the calculated points are connected with solid lines only for the visual comparios.
expanded with temperature- and pressure-dependent terms. For measurements at $T=(298.15$ to 398.15$) \mathrm{K}$ and up to $p=40$ MPa , an extended calibration equation with 14 significant parameters is employed ${ }^{12}$

$$
\begin{align*}
A & =\sum_{i} a_{i}(T / \mathrm{K})^{i}+\sum_{j} b_{j}(p / \mathrm{MPa})^{j}+c(T / \mathrm{K})(p / \mathrm{MPa}) \tag{3}\\
B & =\sum_{i} d_{i}(T / \mathrm{K})^{i}+\sum_{j} e_{j}(p / \mathrm{MPa})^{j}+f(T / \mathrm{K})(p / \mathrm{MPa}) \tag{4}
\end{align*}
$$

where $a_{0}, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, c, d_{0}, d_{1}, d_{2}, d_{3}, e_{1}, e_{2}$, and f are parameters of the extended vibrating tube equations.

The observed reproducibility and estimated maximum uncertainty of the density measurements between $T=(298.15$ and 398.15) K and up to $p=40 \mathrm{MPa}$ is within $\rho= \pm 0.05 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ and $\rho= \pm 0.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, respectively. This leads to maximum relative uncertainties of $\pm 0.03 \%$ for the performed measurements for the solutions. For the pressure measurement, a pressure transducer (S-10, WIKA Alexander Wiegand GmbH \& Co., Germany) was used. The precision after calibration with a dead weight pressure gauge was estimated to be better than $\pm 5 \mathrm{kPa}$. The calibrated (ITS-90) Pt100 temperature sensors installed show a resolution of $\pm 3 \mathrm{mK}$ and a precision of $\pm 30 \mathrm{mK}$, while the thermostat has a stability of $\pm 20 \mathrm{mK}$.

Table 4. Isothermal Compressibilities $\boldsymbol{k} \cdot \mathbf{1 0} / \mathbf{M P a}^{-1}$ of $\left(\mathbf{L i C l}+\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathrm{OH}\right)$

$m=0.10487 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$			$m=0.30229 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$			$m=0.58732 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$		
p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$	p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$	p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$
$T=298.15 \mathrm{~K}$								
0.21	1186	1056	0.18	1155	1043	0.25	1117	1030
5.12	1108	1020	5.04	1081	1010	5.52	1041	997
10.03	1039	988	10.24	1010	977	10.44	977	969
15.24	974	956	15.62	945	947	15.17	923	944
20.06	919	930	20.05	898	924	19.25	880	924
25.41	866	903	25.84	842	897	25.64	821	896
30.06	824	881	30.56	802	876	30.11	784	878
35.71	779	858	35.84	762	855	35.56	744	858
39.98	748	841	39.91	733	841	39.82	716	844
$T=323.15 \mathrm{~K}$								
0.12	1423	1177	0.14	1373	1152	0.24	1313	1119
5.14	1314	1130	5.21	1269	1107	5.03	1220	1079
10.02	1222	1088	10.23	1180	1066	10.05	1135	1042
15.32	1135	1047	15.06	1104	1032	15.62	1053	1005
20.04	1066	1015	20.45	1029	997	20.47	991	976
25.06	1002	984	25.04	974	970	25.14	937	951
30.15	944	955	30.06	919	943	30.06	887	928
35.61	889	927	35.02	872	919	35.22	841	905
39.94	851	907	39.98	830	898	39.97	804	887
$T=348.15 \mathrm{~K}$								
0.14	1741	1337	0.17	1671	1300	0.74	1573	1246
5.08	1590	1272	5.06	1529	1240	5.06	1457	1196
10.06	1459	1214	10.07	1405	1185	10.53	1331	1141
15.41	1339	1160	15.12	1298	1137	15.29	1237	1099
20.06	1249	1119	20.09	1206	1094	20.48	1148	1059
25.84	1152	1073	25.86	1116	1052	25.32	1077	1025
30.71	1083	1039	30.06	1058	1024	30.61	1010	993
35.24	1026	1011	35.84	990	990	35.84	953	966
39.93	973	984	39.94	947	969	39.86	915	947
$T=373.15 \mathrm{~K}$								
0.29	2199	1558	0.31	2103	1512	0.96	1962	1438
5.14	1976	1465	5.06	1897	1425	5.42	1785	1362
10.08	1787	1384	10.07	1716	1347	10.09	1628	1294
15.42	1616	1309	15.02	1566	1280	15.85	1467	1222
20.08	1491	1252	20.31	1431	1219	20.09	1367	1177
25.41	1369	1196	25.41	1322	1168	25.84	1253	1124
30.26	1275	1151	30.06	1237	1127	30.15	1181	1090
35.84	1183	1107	35.16	1157	1089	35.98	1099	1050
39.91	1126	1078	39.96	1093	1057	39.97	1051	1026
$T=398.15 \mathrm{~K}$								
0.74	2884	1878	0.68	2753	1821	1.02	2568	1733
5.01	2569	1750	5.07	2448	1695	5.74	2269	1607
10.45	2245	1614	10.06	2165	1575	10.06	2044	1510
15.42	2006	1511	15.09	1935	1475	15.96	1797	1400
20.09	1821	1429	20.14	1746	1390	20.35	1648	1332
25.84	1636	1345	25.23	1589	1318	25.42	1506	1266
30.15	1520	1291	30.07	1467	1261	30.05	1398	1215
35.86	1394	1231	35.24	1358	1208	34.95	1304	1169
39.86	1320	1195	39.97	1276	1168	39.92	1225	1131
$m=1.22211 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$			$m=2.02242 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$			$m=2.87989 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$		
p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$	p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$	p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$
$T=298.15 \mathrm{~K}$								
0.21	1052	1015	0.41	974	989	0.12	901	959
5.47	981	987	5.23	916	967	5.04	847	936
9.82	929	966	10.05	864	946	10.32	796	913
14.99	873	943	15.03	816	927	15.64	750	893
19.04	834	926	20.12	772	910	20.61	713	875
25.46	779	903	25.61	731	893	25.08	683	861
30.19	743	887	30.08	700	880	30.41	651	846
35.87	705	870	35.41	668	866	35.09	626	833
40.07	680	859	39.94	644	856	39.98	602	822
$T=323.15 \mathrm{~K}$								
0.42	1211	1060	0.23	1110	1000	0.18	1024	958
5.06	1130	1027	5.41	1030	970	5.41	954	931
10.21	1050	995	10.08	966	946	10.08	899	908
15.28	982	967	15.23	905	922	15.24	845	886
20.14	925	942	20.41	852	900	20.06	801	868
25.07	874	920	25.31	808	882	25.30	759	850

Table 4. (Continued)

$m=1.22211 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$			$m=2.02242 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$			$m=2.87989 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$		
p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$	p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$	p / MPa	$k \cdot 10^{6} / \mathrm{MPa}^{-1}$	$\alpha \cdot 10^{6} / \mathrm{K}^{-1}$
30.41	826	899	30.01	770	867	30.07	726	835
35.42	786	881	35.42	732	851	35.21	694	821
39.97	754	867	39.97	704	839	39.86	669	810
$T=348.15 \mathrm{~K}$								
0.41	1441	1154	0.15	1298	1054	0.54	1179	979
5.07	1329	1108	4.96	1198	1015	5.14	1099	950
10.20	1222	1063	10.03	1107	980	10.08	1024	922
15.29	1133	1025	14.96	1032	950	15.06	958	896
20.15	1059	993	20.03	966	923	20.07	901	874
25.06	995	965	25.42	906	899	25.64	845	851
30.42	935	938	30.16	861	880	30.84	800	833
35.41	887	916	35.61	817	861	35.19	767	819
39.96	849	899	39.96	787	848	39.86	736	806
$T=373.15 \mathrm{~K}$								
0.84	1763	1305	0.32	1542	1147	0.98	1350	1016
5.06	1614	1242	5.86	1382	1085	5.14	1257	983
10.06	1465	1179	10.09	1282	1045	9.98	1161	948
15.74	1326	1118	15.72	1169	999	14.62	1089	921
20.34	1232	1077	20.31	1094	968	21.42	996	886
25.08	1150	1040	25.05	1028	940	24.94	954	870
30.41	1073	1004	30.06	969	916	30.15	899	848
35.84	1007	974	35.41	918	893	35.74	848	828
39.82	967	955	39.97	882	878	39.98	813	813
$T=398.15 \mathrm{~K}$								
0.96	2262	1549	0.74	1889	1300	1.01	1575	1080
4.86	2044	1457	5.03	1702	1226	5.07	1457	1040
9.68	1822	1361	10.42	1514	1150	10.14	1333	996
15.06	1624	1274	15.06	1385	1096	15.28	1230	959
20.47	1466	1202	20.74	1258	1042	20.01	1149	929
25.62	1345	1146	25.61	1172	1005	25.32	1068	898
30.41	1254	1103	30.09	1107	977	30.07	1009	875
35.95	1169	1063	35.81	1043	949	34.98	959	856
39.94	1119	1039	39.94	1007	932	39.98	906	835

$\mathrm{LiCl}(w>0.998)$ was supplied from Merck, Germany, and was used without further purification. Before the experiment, the salt was dried in a special cell by prolonged heating at $T=$ 413.15 K and the vacuum being renewed by pumping at frequent intervals for 24 h prior to use. To prevent absorption of water, preparation of salt solutions was performed in a glovebox. The

Figure 8. Plot of apparent molar volumes V_{ϕ} of LiCl in ethanol versus temperature T at $m=1.22211 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}: \star, p=(0.101,0.24$, and 0.52$)$ $\mathrm{MPa} ; \boldsymbol{\square}, p=5 \mathrm{MPa} ; \boldsymbol{\Delta}, p=10 \mathrm{MPa} ; \bullet, p=15 \mathrm{MPa}, \diamond, p=20 \mathrm{MPa}$; $\square, p=25 \mathrm{MPa} ; \Delta, p=30 \mathrm{MPa} ; \bigcirc, p=35 \mathrm{MPa} ; *, p=40 \mathrm{MPa}$; the calculated points are connected with solid lines only for the visual showing.
samples were obtained by successive dilutions of the concentrated solutions. Ethanol ($w>0.998$) was supplied from Carl Roth, Germany, and was degassed by vacuum distillation using a Vigreux column with a height of 90 cm . The final purity of the ethanol was checked by gas chromatography ($w>0.999$) and Karl Fischer titration (water content $<50 \mathrm{ppm}$). The solutions were prepared by mass using an electronic scale with a resolution of 0.0001 g .

Results and Discussion

In this work, the (p, ρ, T) properties and apparent molar volumes V_{ϕ} of LiCl in ethanol at $T=(298.15$ to 398.15$) \mathrm{K}$, at

Figure 9. Plot of deviations of calculated results of apparent molar volume $V_{\phi \text { calcd }}$ of LiCl in ethanol from the literature values $V_{\phi \text { lit }}$ versus molality m : Δ, ref 4 at $T=298.05 \mathrm{~K}$; and ■, ref 7 at $T=298.15 \mathrm{~K}$.

Table 5. Apparent Molar Volumes $V_{\phi} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ of LiCl in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

p / MPa	$\mathrm{m} /\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$					
	0.10487	0.30229	0.58732	1.22211	2.02242	2.87989
$T=298.15 \mathrm{~K}$						
0.101	-2.550	-0.680	0.882	3.359	5.649	7.715
5	-2.090	-0.340	1.265	3.854	6.168	8.220
10	-1.509	0.110	1.765	4.382	6.670	8.705
15	-1.020	0.570	2.295	4.902	7.153	9.167
20	-0.230	1.200	2.908	5.427	7.627	9.605
25	0.680	2.040	3.552	5.947	8.078	10.024
30	1.530	2.782	4.228	6.463	8.516	10.421
35	2.430	3.570	4.937	6.977	8.942	10.808
40	3.340	4.400	5.654	7.502	9.364	11.180
$T=323.15 \mathrm{~K}$						
0.101	-5.670	-4.100	-2.126	0.952	3.574	5.946
5	-5.040	-3.350	-1.354	1.811	4.402	6.688
10	-4.350	-2.590	-0.532	2.651	5.177	7.378
15	-3.600	-1.840	0.336	3.469	5.914	8.025
20	-2.650	-0.800	1.195	4.255	6.592	8.617
25	-1.460	0.102	2.132	5.028	7.249	9.184
30	-0.260	1.254	3.066	5.764	7.870	9.713
35	1.250	2.478	3.999	6.478	8.457	10.210
40	2.660	3.774	4.960	7.184	9.028	10.689
$T=348.15 \mathrm{~K}$						
0.101	-11.002	-9.150	-7.118	-3.592	-0.489	2.537
5	-10.003	-7.937	-5.760	-2.185	0.833	3.681
10	-8.910	-6.822	-4.410	-0.856	2.032	4.720
15	-7.650	-5.545	-3.100	0.358	3.130	5.653
20	-6.240	-4.101	-1.760	1.534	4.143	6.515
25	-4.750	-2.604	-0.446	2.625	5.079	7.296
30	-2.923	-0.996	0.822	3.650	5.951	8.022
35	-0.740	0.617	2.076	4.643	6.763	8.698
40	1.001	2.238	3.320	5.592	7.536	9.332
$T=373.15 \mathrm{~K}$						
0.24	-19.601	-17.215	-14.779	-10.684	-7.032	-3.107
5	-17.702	-15.374	-12.571	-8.504	-4.974	-1.323
10	-16.001	-13.386	-10.441	-6.470	-3.108	0.284
15	-13.903	-11.281	-8.405	-4.632	-1.440	1.706
20	-11.304	-9.171	-6.504	-2.958	0.039	2.962
25	-9.000	-6.982	-4.661	-1.415	1.379	4.090
30	-6.694	-4.824	-2.924	0.024	2.608	5.116
35	-4.201	-2.687	-1.252	1.367	3.735	6.054
40	-1.801	-0.800	0.391	2.637	4.791	6.921
$T=398.15 \mathrm{~K}$						
0.52	-32.002	-28.643	-25.277	-20.742	-16.802	-11.887
5	-28.402	-25.100	-21.874	-17.430	-13.605	-9.077
10	-25.003	-22.002	-18.517	-14.284	-10.620	-6.462
15	-22.301	-18.926	-15.538	-11.572	-8.088	-4.262
20	-19.101	-15.897	-12.846	-9.176	-5.906	-2.373
25	-16.004	-12.850	-10.306	-7.015	-3.968	-0.705
30	-13.005	-10.300	-7.955	-5.064	-2.242	0.766
35	-9.701	-7.700	-5.772	-3.258	-0.677	2.086
40	-7.202	-5.500	-3.709	-1.599	0.741	3.284

pressures up to $p=40 \mathrm{MPa}$, are reported. The experiments were carried out at $m=(0.10487,0.30229,0.58732,1.22211$, 2.02242, and 2.87989) mol $\cdot \mathrm{kg}^{-1}$ of LiCl . The obtained (p, ρ, $T)$ results are listed in Table 1.

Using a program for standard thermodynamic analysis to describe the (p, ρ, T) properties of ethanol solutions of LiCl , the equation of state (1) from ref 13 was used

$$
\begin{equation*}
p=A \rho^{2}+B \rho^{8}+C \rho^{12} \tag{5}
\end{equation*}
$$

where the coefficients of eq $5, A, B$, and C are functions of temperature and molalities m

$$
\begin{align*}
A & =\sum_{i=1}^{2} T^{i} \sum_{j=0}^{4} a_{i j} m^{j} \tag{6}\\
B & =\sum_{i=0}^{1} T^{i} \sum_{j=0}^{4} b_{i j} m^{j} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
C=\sum_{i=0}^{1} T \sum_{j=0}^{4} c_{i j} m^{j} \tag{8}
\end{equation*}
$$

$a_{i j}, b_{i j}$, and $c_{i j}$ are the coefficients of the polynomials, and they are given in Table 2. Equations 5 to 8 describe the experimental and interpolated results between the $m=(0$ and 2.87989) $\mathrm{mol} \cdot \mathrm{kg}^{-1}$ molality interval with $\pm 0.03 \%$ average deviation. During the molality m dependence analysis of experimental results, the (p, ρ, T) properties of ethanol from refs 14 to 16 were used for $m=0$. The standard, absolute, and average deviations of fitting by eqs 5 to 8 are presented in Table 3 . Figures 1 to 3 show the plot of pressure of $\left(\mathrm{LiCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ versus density at $m=0.58732 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$, pressure versus density at $T=298.15 \mathrm{~K}$, and deviations of experimental density from calculated density versus pressure.

The graphical analysis of the temperature dependence of the coefficients of eq 5 revealed that, at $T \rightarrow T_{\mathrm{c}}, A \rightarrow 0$. Such behavior
of $A=f(T)$ may be explained by the fact that, according to Putilov, ${ }^{17}$ the first term on the right-hand side of eq $5, A \rho^{2}$, is the attractive force (attractor pressure) and the second and third terms are the repulsive force (repulsive pressure). As the temperature rises, the spacing between molecules increases, which contributes to a decrease in the attractive force. As the attractive force tends to zero $(A \rightarrow 0)$, molecules under the effect of the repulsive force are capable of displacement. The extent of their displacement is defined only by the density of the substance, i.e., external pressure. As a result, the aggregate state changes. Note that the form of eq 5 was derived from Putilov's molecular-kinetic theory.

The (p, ρ, T) properties of these solutions can be used to derive the isothermal compressibilities $k \cdot 10^{6} / \mathrm{MPa}^{-1}$ and thermal expansibilities $\alpha \cdot 10^{6} / \mathrm{K}^{-1}$. These properties were calculated from eqs 5 to 8

$$
\begin{gather*}
k=(1 / \rho)(\partial p / \partial \rho)_{T}^{-1} \tag{9}\\
\alpha=(1 / \rho)(\partial p / \partial T)(\partial p / \partial \rho)_{T}^{-1} \tag{10}\\
k=1 /\left(2 A \rho^{2}+8 B \rho^{8}+12 C \rho^{12}\right) \tag{11}\\
\alpha=\left(A^{\prime}+B^{\prime} \rho^{6}+C^{\prime} \rho^{10}\right) /\left(2 A+8 B \rho^{6}+12 C \rho^{10}\right) \tag{12}
\end{gather*}
$$

where A^{\prime}, B^{\prime}, and C^{\prime} are the derivatives of A, B, and C in the following form

$$
\begin{equation*}
A^{\prime}=\sum_{i=1}^{2} i T^{i-1} \sum_{j=0}^{4} a_{i j} m^{j}, \quad B^{\prime}=\sum_{j=0}^{4} b_{1 j} m^{j}, \quad C^{\prime}=\sum_{j=0}^{4} c_{1 j} m^{j} \tag{13}
\end{equation*}
$$

The calculated values of the isothermal compressibilities $k \cdot 10^{6} /$ MPa^{-1} and thermal expansibilities $\alpha \cdot 10^{6} / \mathrm{K}^{-1}$ are given in Table 4 and shown in Figures 4 and 5.

There are two publications ${ }^{3,4}$ presenting the density results of these solutions. The experimental density results of Butler and Lees ${ }^{3}$ were measured at $T=291.15 \mathrm{~K}$, and this temperature point is outside of our temperature interval. In this case, our results were not compared with the results from ref 3 . The experimental investigations of thermal properties of $\mathrm{LiCl}+$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions at $T=298.04 \mathrm{~K}$ were carried out by Vosburgh et al. ${ }^{4}$ using a pycnometer method. The comparison of our extrapolated results to $T=298.05 \mathrm{~K}$ results with the results from ref 4 showed $\pm 0.037 \%$ average deviation (Figure 6). Our values are mainly higher than the results of ref 4.
The apparent molar volumes V_{ϕ} of LiCl in ethanol were defined by eq 14 and are listed in Table 5

$$
\begin{equation*}
V_{\phi}=\left(\rho_{\mathrm{e}}-\rho_{\mathrm{s}}\right) /\left(m \rho_{\mathrm{s}} \rho_{\mathrm{e}}\right)+M / \rho_{\mathrm{s}} \tag{14}
\end{equation*}
$$

where ρ_{e} and ρ_{s} are densities of ethanol and the solutions, respectively; m is the molality of solution; and M is the molar mass of the dissolved LiCl . The calculations were carried out using the density results of ethanol and solution at the same temperatures and pressures.

The maximum relative uncertainties ${ }^{18} \delta V_{\phi}$ in the V_{ϕ} determination by the investigated concentrations are $\delta V_{\phi}=(0.38$, $0.13,0.07,0.03,0.02$, and 0.01$) \%$, respectively. Figure 7 shows the plot of the apparent molar volumes V_{ϕ} of LiCl in ethanol versus m at $T=298.15 \mathrm{~K}$ and various pressures together with literature results. Figure 8 gives the plot of the apparent molar volumes V_{ϕ} of LiCl in ethanol versus T at $m=1.22211$ $\mathrm{mol} \cdot \mathrm{kg}^{-1}$ and various pressures.
The apparent molar volume results were compared with available literature values. The one value of ref 4 was compared with our extrapolated value of apparent molar volume at $T=$
298.05 K , and $\Delta V_{\phi}= \pm\left(0.89 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ absolute deviation was found. The five values of apparent molar volume from ref 7 were compared with our calculated values at $T=298.15 \mathrm{~K}$, and $\Delta V_{\phi}= \pm 0.65\left(\mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ absolute deviation was found. The apparent molar volume results of ref 4 at $T=298.05 \mathrm{~K}$ and ref 7 at $T=298.15 \mathrm{~K}$ were added to Figure 7 for visual comparison, and deviation of calculated results from refs 4 and 7 are shown in Figure 9.

The nonavailability of dielectric permittivity data of ethanol in the literature at the experimental pressures and temperature intervals in this work has made it impossible to calculate the apparent molar volume of these solutions in infinite dilution and compare them with the literature results (refs 5,6 , and 8).

Conclusion

For the first time, the (p, ρ, T) properties and apparent molar volumes V_{ϕ} of LiCl in ethanol at $T=(298.15$ to 398.15$) \mathrm{K}$ and pressures up to $p=40 \mathrm{MPa}$ are reported. An empirical correlation for the density of the investigated solutions with composition, pressure, and temperature has been derived. The thermal expansivity, isothermal compressibility of solutions, and apparent molar volume of LiCl in ethanol were calculated from the (p, ρ, T) properties at the above-mentioned state parameter intervals in the first time. The experimental (p, ρ, T) properties and calculated apparent molar volumes V_{ϕ} of LiCl in ethanol were compared with the few literature results, and good agreement was found. The measured volumetric results are useful for absorption refrigeration machines and heat pumps.

Acknowledgment

The authors thank Dipl.-Ing. Tristan Vincent for his work during the preparation of the manuscript.

Literature Cited

(1) Ihmels, E. C.; Safarov, J.; Hassel, E.; Gmehling, J. (p, ρ, T) properties, and apparent molar volumes V_{ϕ} of ZnBr_{2} in methanol at $T=(298.15$ to 398.15) K and pressures up to $p=40 \mathrm{MPa}$. J. Chem. Thermodyn. 2005, 37, 1318-1326.
(2) Ihmels, E. C.; Safarov, J. (p, ρ, T) properties, and apparent molar volumes V_{ϕ} of ZnBr_{2} in $\mathrm{CH}_{3} \mathrm{OH}$. J. Chem. Eng. Data 2006, 51, 10151019.
(3) Butler, J. A. V.; Lees, A. D. The Behaviour of Electrolytes in Mixed Solvents. Part III.- The Molecular Refractivities and Partial Molar Volumes of Lithium Chloride in Water-Ethyl Alcohol Solutions. Proc. Royal Soc. A 1931, 131, 382-390.
(4) Vosburgh, W.; Connell, L. C.; Butler J. A. V. The Electrostriction produced by Salts in Some Aliphatic Alcohols. Part I. The Apparent Molar Volumes of Lithium Chloride in Some Aliphatic Alcohols. J. Chem. Soc. 1933, 933-942.
(5) Millero, F. J. The Molal Volumes of Electrolytes. Chem. Rev. 1971, 71 (2), 147-176.
(6) Kawaizumi, F.; Zana, R. Partial Molal Volumes of Ions in Organic Solvents from Ultrasonic Vibration Potentials and Density Measurements. II. Ethanol and Dimethylformamide. J. Phys. Chem. 1974, 78, 1099-1105.
(7) Glugla, P. G.; Byon, J. H.; Eckert, Ch. A. Partial Molar Volume of Some Monovalent Salts and Polar Molecules in organic Solvents. J. Chem. Eng. Data 1982, 27, 393-398.
(8) Marcus, Y.; Hefter, G. Standard Partial Molar Volume of Electrolytes and Ions in Nonaqueous Solvents. Chem. Rev. 2004, 104, 3406-3452.
(9) Tekin, A.; Safarov, J.; Shahverdiyev, A.; Hassel, E. P. (p, ρ, T) properties of 1-Butyl-3-methylimidazolium tetrafluoroborate and 1-Bu-tyl-3-methylimidazolium hexafluorophosphate at $T=(298.15$ to 398.15$)$ K and pressures up to $p=40 \mathrm{MPa}$. J. Mol. Liq. 2007, 136, 177-182.
(10) Kratky, O.; Leopold, H.; Stabinger, H. H. Dichtemessungen an Flüssigkeiten und Gasen auf $10^{-6} \mathrm{~g} / \mathrm{cm}^{3}$ bei $0.6 \mathrm{~cm}^{3}$ Präparatvolumen. Z. Angew. Phys. 1969, 27, 273-277.
(11) Majer, V.; Pádua, A. A. H. Measurement of the Thermodynamic Properties of Single Phases; Goodwin, A. R. H., Marsh, K.N., Wakeham, W.A., Eds.; Elsevier Science \& Technology: NY, 2003; pp 149-168.
(12) Ihmels, E. C.; Gmehling, J. Densities of Toluene, Carbon Dioxide, Carbonyl Sulfide, and Hydrogen Sulfide over a Wide Temperature
and Pressure Range in the Sub- and Supercritical State. Ind. Eng. Chem. Res. 2001, 40, 4470-4477.
(13) Safarov, J. T. The investigation of the (p, ρ, T) and $\left(p_{s}, \rho_{s}, T_{s}\right)$ properties of $\left\{(1-x) \mathrm{CH}_{3} \mathrm{OH}+x \mathrm{LiBr}\right\}$ for the application in absorption refrigeration machines and heat pumps. J. Chem. Thermodyn. 2003, 35, 19291937.
(14) Dilon, H. E.; Penoncello, S. G. A Fundamental Equation for Calculation of the Thermodynamic Properties of ethanol. Int. J. Thermophys. 2004, 25 (2), 321-335.
(15) Takiguchi, Y.; Uematsu, M. PVT Measurements of Liquid Ethanol in the Temperature Range from 310 to 363 K at Pressures up to 200 MPa. Int. J. Thermophys. 1995, 16, 205-214.
(16) Takiguchi, Y.; Uematsu, M. Densities for liquid ethanol in the temperature range from 310 to 480 K at pressures up to 200 MPa . J. Chem. Thermodyn. 1996, 28, 7-16.
(17) Putilov, K. A. Thermodynamics of Simplest Liquids. Issledovaniya po termodinamike (Thermodynamic Studies); Moscow: Nauka, 1973; p 105.
(18) Safarov, J. T.; Najafov, G. N.; Shahverdiyev, A. N.; Hassel, E. (p, ρ, $T)$ and $\left(p_{s}, \rho_{s}, T_{s}\right)$ properties, and apparent molar volumes V_{ϕ} of LiNO_{3} (aq) in the 298.15-398.15 K temperature range and pressures to $p=$ 60 MPa . J. Mol. Liq. 2005, 116, 157-163.

Received for review August 02, 2007. Accepted November 16, 2007. Dr. J.T. Safarov thanks the Alexander von Humboldt Foundation of Germany for the support of his research work at the Rostock University of Germany.
JE700438D

[^0]: * Corresponding author. Tel: +49 381 4989415. Fax: +493814989402. E-mail: javids@azdata.net.
 ${ }^{\dagger}$ Azerbaijan Technical University.
 ${ }^{+}$Universität Rostock.

